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Abstract

Face animation has received a lot of attention from re-
searchers in recent years due to its wide range of promising
applications. Many face animation models based on opti-
cal flow or deep neural networks have achieved great suc-
cess. However, these models are likely to fail in animated
scenarios with significant view changes, resulting in unre-
alistic or distorted faces. One of the possible reasons is that
such models lack prior knowledge of human faces and are
not proficient to imagine facial regions they have never seen
before. In this paper, we propose a flexible and generic ap-
proach to improve the performance of face animation with-
out additional training. We use multiple source images as
input as compensation for the lack of prior knowledge of
faces. The effectiveness of our method is experimentally
demonstrated, where the proposed method successfully sup-
plements the baseline method.

1. Introduction

Face animation is a technology that brings movements
in videos to still faces in photos, which has wide real-
world applications, including augmented reality, movie and
animation production, and entertainment camera software.
Specifically, face animation is a branch of image animation,
which refers to the task of generating videos with the face
in a still source image, and with motions or facial expres-
sions derived from a driving video. Earlier object-specific
methods relied on prior knowledge of objects to animate
[1, 3, 27, 19, 11, 20, 26, 29, 32], resulting limited gener-
alization ability. In the past few years, generative models
based on deep learning have facilitated the development of
image animation. Generative adversarial networks (GANs)
[9] have been widely used for transferring facial expres-
sions or motion patterns[16, 7, 25, 31]. However, these gen-
erative models require supervision and large datasets with
costly annotations. More importantly, the results generated
from neural networks may suffer from missing facial de-
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tails. Recently, several unsupervised [28, 21, 22, 24] meth-
ods based on optical flow have been popular with a promi-
nent performance on this task. In [22], an occlusion-aware
generator is proposed, which adopts an automatically esti-
mated occlusion mask to indicate object parts that are not
visible in the source image. However, the animation with
large view changes is still a challenging task. Although the
occlusion-aware generator is capable of simply inferring in-
visible parts, it is not flexible enough to infer with large
changes in views or facial expressions. In fact, this chal-
lenge comes from lacking prior knowledge of faces. Even
humans, sometimes still fail to predict the invisible areas
in such scenarios. In this paper, we propose to complete
face animation with multiple source images, which cover
different views of target faces and serve as necessary prior
knowledge of animation. It is worth noting that our method
is different from the early object-specific methods, as the
method is based on the popular unsupervised First Order
Motion model (FOMM) which is independent of objects.
The prior knowledge we mentioned for our method is to
introduce prior knowledge for supplementation of FOMM,
which will not contribute to the training of FOMM. Our
main contributions are as follows:

• We divide the face animation into two tasks (self-
driving and cross-driving) and propose flexible anima-
tion methods that take multiple source images as in-
put, improving the animation performance in scenar-
ios with large changes in views. For the two tasks, we
adopt different implementations with the idea of utiliz-
ing information from multiple source images.

• We propose the idea of sampling unique frames from
videos to identify the necessary prior knowledge of the
faces, and the matching scheme for the unique frames
and source images.

• We also collect a set of high-quality representative
videos as our evaluation set, which may benefit the
evaluation of future relevant work.
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2. Related work
Image Animation. Previous image animation methods
can be divided into supervised methods and unsupervised
methods. Early image animation models require supervised
training with prior knowledge of the moving objects, such
as parametric 3D models [6, 13, 26, 8, 5, 14], landmarks
[3, 29, 20, 23, 11, 32, 2, 17], domain labels [4], or seman-
tic segmentation [15]. As a result, these approaches are
limited to labeled data and certain categories. In contrast,
unsupervised methods have been proposed to address these
limitations. X2Face [28] builds a canonical representation
of an input face, and generates a warp field conditioned on
the driving video. Monkey-Net [21] learns a set of unsu-
pervised keypoints to generate animations. Followup work
substantially improves the quality of animation by consid-
ering a first-order motion model (FOMM) [22] for each
keypoint, represented by regressing a local, affine transfor-
mation. MRAA [24] uses PCA-based motion estimation,
which has better quality in representing articulated motions
(e.g., human body). Zhao and Zhang [30] propose thin-plate
spline (TPS) motion estimation and a new end-to-end unsu-
pervised framework, which leverages multi-resolution oc-
clusion masks to indicate the missing regions for inpaint-
ing. The most similar work to ours is FLNet [10], which
is a framework combining appearance-based and warping-
based methods, and taking five source images as inputs. Our
method takes multiple but not fixed-numbered source im-
ages. Another difference is that our method takes advantage
of FOMM instead of training a model from scratch.

3. Method
This section presents our face animation method. The

idea behind our method is to use multiple source images
to provide supplementation information for the baseline
FOMM model. For example, if we input a source image
with the left face of person A and a driving video with per-
son B moving his/her head. The single-source-image mod-
els are likely to crash when the face in the video turns to the
right. When it comes to our method, the source images con-
tain more than one photo of person A from different views
and with different facial expressions, such as photos from
the front, left, and right, photos with mouth closed and open.
In Section 3.1, we briefly introduce our method. From Sec-
tion 3.2 to Section 3.4, we present the components of our
method in details.

3.1. Method Overview

As we discussed before, face animation with a single
source image sometimes fails to infer the invisible parts in
the source image. So we propose to use multiple source im-
ages to address this issue. Our method is inspired by the
keyframe concept in animation production. The essential

idea is to match our multiple source images to the represen-
tative frames in the driving video, which is similar to the
keyframes in animation production.

We divide the face animation task into self-driving and
cross-driving tasks. Self-driving refers to the task in which
the source image(s) comes from the input driving video,
also as known as reconstruction in previous work [21, 22,
24]. Self-driving was used as a quantitative evaluation ap-
proach of animation algorithms, and also has great potential
in video compression. Cross-driving refers to the more gen-
eral animation task, where the source(s) image and driving
video are from different videos or belong to different per-
sons. For self-driving, we may explicitly utilize the source
images which come from the driving video, but for cross-
driving, there is a gap between the faces in the source im-
ages and the driving video. Therefore, for cross-driving, we
apply a different method that implicitly utilizes the multiple
source images. Besides, it is worth mentioning that for con-
venience, the multiple source images also are sampled from
a video, which we call source video.

The basic idea of our method is given in Fig.1 and 2. Be-
fore animating the source images, for both tasks we have
a common scheme of sampling and matching source im-
ages and frames in the driving video. Given a driving video,
firstly we sample unique frames from the driving video (de-
tails described in Sec.3.2). The aim of sampling unique
frames is to find a small number of representative frames
in the driving video. For example, for a video of a person
talking, the unique frames may contain a frame of the per-
son with the mouth closed, and another frame of the person
with the mouth slightly open. This step allows us to identify
the frames that are most different from others so that we can
use different source images to compensate for the invisible
areas of the original FOMM.

After obtaining unique frames from the driving video,
we match the unique frames with the images from the
source video. For every unique frame, we match it with the
most similar source image and thus form match pairs be-
tween unique frames and source images. Obviously, some-
times the matching is not perfect, and not all unique frames
are matched with an image.

Now, for both tasks, we obtain several source images,
and also the corresponding matching pairs of source images
and unique frames from the driving video. The following
procedure is animating the face in the source images with
the driving video. For the self-driving task, we use inter-
polation to fill in the gap between animated source images
(more details in Sec.3.4). For the cross-driving task, we use
a single source image and utilize the facial landmarks of the
remaining source images while animating (more details in
Sec.3.4). Examples can be found in supplementary materi-
als.



Figure 1. Self-driving Implementation

Figure 2. Cross-driving Implementation

3.2. Sample Unique Frames from Driving Video

We first develop a scheme to evaluate the similarity be-
tween two frames. For every two frames, we extract the
corresponding facial landmark, which is an array with co-
ordinates of 68 specific keypoints on the face. As the co-
ordinates of the facial landmarks contain specific semantics
(such as 0th - 16th points marking the jawline), we then de-
fine the distance between two frames as the square of L2
distance between the facial landmarks,

distance(i, j) = ‖lmi − lmj‖22 (1)

where lmi and lmj are the facial landmarks of frame i and
frame j respectively. A lower distance value indicates the

two frames are more similar.
Given the above similarity calculation, we sample a ran-

dom frame from the driving video as the first unique frame.
Then we iterate all other frames to find the frame that has
the maximum average distance from the current unique
frame, and also remove frames that are similar to the cur-
rent unique frame. We set a hyperparameter called mar-
gin, and any frame whose average distance with the current
frame is within the range of margin will be not considered
in the following iterations. After this iteration, we take the
newly selected frame as the second unique frame and iter-
ate the remaining frames to select the next unique frame and
remove similar frames to the second unique frame. As a re-
sult, once the value for margin is assigned, we can repeat



the above process until all frames are removed or marked
as unique frames. There is a simple example of sampled
unique frames in Fig.1 and Fig.2.

3.3. Match Source Images with Unique Frames

As we mentioned in Sec.3.1, we obtain the source im-
ages from a source video. For the self-driving task, the
source images also come from the driving video, and we di-
rectly use the sampled unique frames as the source images.
For the cross-driving task, we adopt a matching scheme to
find source images from the source video. First, for ev-
ery unique frame uf , we find the most similar frame srci
from the whole source video. The similarity is evaluated as
Eq.1. Then given this frame of the source video, we find
the corresponding most similar frame drvi in the driving
video. If uf and drvi are close to each other (for exam-
ple, uf is the 6th frame, and drvi is the 8th frame), we take
the pair {srci, drvi} as a well-matched pair, and the srci is
one source image. The matching scheme is designed based
on the empirical fact that the function of finding the most
similar frame is not symmetric, and the nature thought of
matching source images to the video rather than the oppo-
site. Note that the scheme is sufficient but not necessary,
however, it effectively guarantees the matching relationship
as a strong constraint. Here we provide an example in Fig.3.
More examples can be found in supplementary materials.

Figure 3. Example of Matched Pairs

3.4. Animation with Multiple Source Image Pairs

Figure 4. Simple Example of Transition Zone

Self-driving Given the matched pairs, we first obtain the
corresponding outputs for every source image and the driv-
ing video,

vi = fomm(srci, drv) (2)

where vi is the FOMM output video generated from the
driving video drv and source image srci. Assume the drvi
(also srci for self-driving) is the frame at time ti in the driv-
ing video. The output frame at ti is the most ideal frame,
also the exact original frame. We name as a keyframe. We
take this frame as the tith frame in the final video fv,

fv(ti) = vi(ti) (3)

However, these frames are sparse. We name the gap be-
tween two adjacent ideal frames the transition zone. In or-
der to fill in the transition zone, we exploit the information
from the two adjacent corresponding source images with
frame interpolation.

Assume that we are considering the transition zone be-
tween fv(ti) and fv(tj), at time ti and tj respectively, and
the corresponding source images are srci, srcj . Firstly, to
smooth the transition, we assign the first 20% of the tran-
sition zone’s length as the neighborhood of the fv(ti), de-
noted as δ(ti). The same operation is performed to the last
20% to fv(tj). Within the neighborhood, we simply fill in
these frames with the corresponding frames of FOMM out-
put with the matched source image,

fv(t) = vi(t) = (fomm(srci, drv))(t),

∀t ∈ δ(ti)
(4)

where t denotes the output frame at time t in the neighbor-
hood of ti.

For the remaining 60% transition zone, we
interpolate[18] it with the FOMM outputs with the
source images srci, srcj .

fv(t) = interpolate(vi(t), vj(t)),
∀t ∈ transition zone, and /∈ δ(ti) ∪ δ(tj)

(5)

As for the empty frames before the first keyframe, or af-
ter the last keyframe, we regard them as the neighborhood
of the nearest keyframe (i.e. the first keyframe or the last
keyframe). A simple demonstration of this part is shown in
Fig.3.4. It is worth noting that the driving video can be a se-
ries of frames or corresponding facial landmarks, which im-
plies that we can reconstruct the video from several source
images and a set of facial landmarks. Given that our self-
driving implementation is superior, it has much potential in
video compressing, too.

Cross-driving Different from self-driving implementa-
tion, cross-driving utilizes the source images implicitly.
FOMM puts forward the assumption that when the facial
landmark difference between landmarks lmf of the driving
frame is relative to the landmarks lmdrv of the unique frame
(that is, the frame that is considered to match the source im-
age in the driving video, also called driving initial frame



in [22]), is diff(lmf , lmdrv), then in the output video, the
landmarks of the corresponding output frame,

lmout = lmsrc + diff(lmf , lmdrv) (6)

where lmsrc is the landmarks of the source image.
Due to the landmark difference between the source im-

age and the driving initial frame, when the facial expression
or angle changes greatly, the output lmout does not look like
the real face, resulting in the generated face looking bad.

Therefore, our implementation uses multiple matched
pairs of source images and landmarks of unique frames.
Each pair calculates an output landmark lmouti according
to the lmf of the current driving frame, and finally ac-
cording to the driving frame and each unique frame. All
landmark distances are weighted summation to get the fi-
nal output landmarks lmout. To calculate the landmarks of
the output frame, given n source image-driving initial frame
pairs {src1, drv1; src2, drv2; · · · ; srcn, drvn} and the cur-
rent driving frame f :

lmouti = lmsrci + diff(lmf , lmdrvi) (7)

wi ∝
1

distance(lmf , lmdrvi)
(8)∑

wi = 1 (9)

lmout =
∑

wilmouti (10)

4. Experiments
Dataset The most common dataset for face animation is
VoxCeleb dataset, which contains 22496 videos, extracted
from YouTube videos. However, it is difficult to filter out
the videos with significant view changes for our evalua-
tion. Therefore, we collect an evaluation set from Celeb-
DF dataset. Celeb-DF is a large-scale dataset for Deep-
Fake forensics, including 590 original videos collected from
YouTube and 5639 corresponding DeepFake videos. For
our evaluation set, we only collect the original videos. We
categorize our evaluation set as basic, challenging, and
sources. The basic and challenging folders contain 20
videos respectively. The faces in the basic folder almost
only have facial expression changes, while the faces in
the challenging folder are also accompanied by head pose
changes. For the sources folder, we provide three videos
with sufficient pose changes.

Metrics

• L1. Given the face animation generally lacks ground-
truth videos, Siarohin et al. [21] proposed to recon-
struct the videos with the source image and driving
video coming from the same video. Then L1 differ-
ence is calculated between the original video and the

generated video, to indicate the animation ability of
the models.

• Average Keypoint Distance (AKD) [21]. AKD refers
to the average distance between the detected keypoints
of the original video and generated video.

• Fréchet Inception Distance (FID) [12]. FID is an eval-
uation metric for assessing the quality of images or
videos generated by a model, comparing the distribu-
tion of generated images with the distribution of real
images.

Evaluation Protocol For self-driving tasks, the ground
truth is the original driving video, and we expect the output
video can be close to the original video as much as possi-
ble. However, due to the lack of ground truth in the cross-
driving task, these metrics are not available for the cross-
driving task. According to previous work[21, 22, 24], the
evaluation can be divided into reconstruction quality and
animation quality according to the availability of ground
truth. Note that according to the cross-driving algorithms,
the results in a reconstruction manner should be the same as
the original FOMM, which we will test in the reconstruc-
tion evaluation of cross-driving. For self-driving, the aim is
to compete with other methods on metrics. All four met-
rics are applied for reconstruction quality evaluation, and
we also conduct user studies for the evaluation of animation
quality for cross-driving.

Comparison with State of the Art We compare our
method with three previous methods, including Monkey-
Net[21], FOMM[22], MRAA[24]. The margin for sam-
pling unique frames is set to 0.5 to generate 3-7 pairs of
source images and unique frames. First, we compare the re-
construction quality with four metrics on basic/challenging
split, and the results are shown in Table.1. Our self-driving
method outperformed all the methods on L1 and FID on
both basic and challenging split, except for the AKD is
slightly higher than MRAA. The superiority is more obvi-
ous on challenging split, which indicates the effectiveness
of our methods for face animation with significant view
changes. The essence of our cross-driving implementa-
tion implies the generated results in a reconstruction man-
ner should be the same as the FOMM, and the experiments
also prove this point. For animation quality, we conducted
user evaluations for the comparison of our cross-driving
implementation with FOMM/MRAA. The results can be
found in Table.2. On both the basic/challenging splits,
our method is preferred to FOMM and strongly surpasses
Monkey-Net and MRAA. When compared to FOMM, our
method achieved over 50% approval rate, indicating that re-
sults of our method look more natural than FOMM, and our
method successfully supplements the FOMM. We note that



Figure 5. Examples of Driving Video, Our Output and FOMM Output

the performance of all the methods on the challenging split
is not satisfactory enough to deceive human eyes, therefore,
the rate only indicates a comparative result. This obser-
vation also demonstrates the contribution of our evaluation
set, which provides a challenging benchmark for future im-
provement. The qualitative results are shown in Fig.1, and
more results can be found in supplementary materials.

Metrics L1↓ FID↓ AKD↓ Data Split
Monkey-Net 0.09841 81.61 6.229 basic
MRAA 0.04542 27.01 2.128 basic
FOM 0.06924 22.86 4.856 basic
Ours(cross-driving) 0.06921 22.87 4.875 basic
Ours(self-driving) 0.03012 10.08 3.258 basic
Monkey-Net 0.10537 70.32 10.57 challenging
MRAA 0.05930 29.78 2.709 challenging
FOM 0.08898 32.69 9.985 challenging
Ours(cross-driving) 0.08903 32.69 9.973 challenging
Ours(self-driving) 0.02922 7.552 3.162 challenging

Table 1. Reconstruction Quality Evaluation of Self-driving and
Cross-driving Implementation

Ours vs Monkey-Net FOMM MRAA
basic split 95% 70% 95%
challenging split 95% 65% 100%

Table 2. User Study of Cross-driving Implementation

5. Conclusions
We study the challenging task of face animation in

scenarios with large pose changes and propose a flexible
method. Unlike prior approaches, our method takes mul-
tiple source images as input and does not require addi-
tional training. We also contribute an evaluation set and
the scheme of sampling and matching frames. The exper-
iments demonstrated the effectiveness of our method, and
our method may hopefully become a convenient component

for future face animation methods with single source im-
ages to improve the performance of practical applications.
Our methods also have several limitations, including back-
ground blurring, insensitivity to the eyes closing/opening,
and dependence on the same poses (when the source im-
ages only contain the right-side face, while the people in
the driving video show the left-side face). The difference in
face shapes may also influence the results.
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